Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biomedicines ; 11(5)2023 May 03.
Article in English | MEDLINE | ID: covidwho-20242114

ABSTRACT

The clinical manifestations of SARS-CoV-2 infection vary widely, from asymptomatic infection to the development of acute respiratory distress syndrome (ARDS) and death. The host response elicited by SARS-CoV-2 plays a key role in determining the clinical outcome. We hypothesized that determining the dynamic whole blood transcriptomic profile of hospitalized adult COVID-19 patients and characterizing the subgroup that develops severe disease and ARDS would broaden our understanding of the heterogeneity in clinical outcomes. We recruited 60 hospitalized patients with RT-PCR-confirmed SARS-CoV-2 infection, among whom 19 developed ARDS. Peripheral blood was collected using PAXGene RNA tubes within 24 h of admission and on day 7. There were 2572 differently expressed genes in patients with ARDS at baseline and 1149 at day 7. We found a dysregulated inflammatory response in COVID-19 ARDS patients, with an increased expression of genes related to pro-inflammatory molecules and neutrophil and macrophage activation at admission, in addition to an immune regulation loss. This led, in turn, to a higher expression of genes related to reactive oxygen species, protein polyubiquitination, and metalloproteinases in the latter stages. Some of the most significant differences in gene expression found between patients with and without ARDS corresponded to long non-coding RNA involved in epigenetic control.

2.
Front Cell Infect Microbiol ; 13: 1165236, 2023.
Article in English | MEDLINE | ID: covidwho-2318685

ABSTRACT

COVID-19-associated pulmonary aspergillosis (CAPA) has emerged as a frequent complication in the intensive care unit (ICU). However, little is known about this life-threatening fungal superinfection in solid organ transplant recipients (SOTRs), including whether targeted anti-mold prophylaxis might be justified in this immunosuppressed population. We performed a multicentric observational retrospective study of all consecutive ICU-admitted COVID-19 SOTRs between August 1, 2020 and December 31, 2021. SOTRs receiving antifungal prophylaxis with nebulized amphotericin-B were compared with those without prophylaxis. CAPA was defined according the ECMM/ISHAM criteria. Sixty-four SOTRs were admitted to ICU for COVID-19 during the study period. One patient received antifungal prophylaxis with isavuconazole and was excluded from the analysis. Of the remaining 63 SOTRs, nineteen (30.2%) received anti-mold prophylaxis with nebulized amphotericin-B. Ten SOTRs who did not receive prophylaxis developed pulmonary mold infections (nine CAPA and one mucormycosis) compared with one who received nebulized amphotericin-B (22.7% vs 5.3%; risk ratio 0.23; 95%CI 0.032-1.68), but with no differences in survival. No severe adverse events related to nebulized amphotericin-B were recorded. SOTRs admitted to ICU with COVID-19 are at high risk for CAPA. However, nebulized amphotericin-B is safe and might reduce the incidence of CAPA in this high-risk population. A randomized clinical trial to confirm these findings is warranted.


Subject(s)
COVID-19 , Organ Transplantation , Humans , Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Retrospective Studies
4.
Infect Dis Ther ; 12(1): 273-289, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2158223

ABSTRACT

INTRODUCTION: The profiles of patients with COVID-19 have been widely studied, but little is known about differences in baseline characteristics and in outcomes between subjects with a ceiling of care assigned at hospital admission and subjects without a ceiling of care. The aim of this study is to compare, by ceiling of care, clinical features and outcomes of hospitalized subjects during four waves of COVID-19 in a metropolitan area in Catalonia. METHODS: Observational study conducted during the first (March-April 2020), second (October-November 2020), third (January-February 2021), and fourth wave (July-August 2021) of COVID-19 in five centers of Catalonia. All subjects were adults (> 18 years old) hospitalized with a proven SARS-CoV-2 infection and with therapeutic ceiling of care assessed by the attending physician at hospital admission. RESULTS: A total of 5813 subjects were analyzed. Subjects with a ceiling of care were mainly older (difference in median age of 20 years), with more comorbidities (Charlson index 3 points higher) and with fewer clinical signs at baseline than patients without a ceiling of care. Some features of their clinical profiles changed among waves. There were differences in treatments received during hospital admission across waves, but not between subjects with and without a ceiling of care. Subjects with a ceiling of care had a death incidence more than four times the death incidence of subjects a without a ceiling of care (risk ratio (RR) ranging from 3.5 in the first wave to almost 6 in the third and fourth). Incidence of severe pneumonia and complications for subjects with a ceiling of care was around 1.5 times the incidence in subjects without a ceiling of care. DISCUSSION: Analysis of hospitalized subjects with SARS-CoV-2 infection should be stratified according to therapeutic ceiling of care to avoid bias and outcome misestimation.

5.
BMC Infect Dis ; 22(1): 828, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2116623

ABSTRACT

BACKGROUND: The incubation period of an infectious disease is defined as the elapsed time between the exposure to the pathogen and the onset of symptoms. Although both the mRNA-based and the adenoviral vector-based vaccines have shown to be effective, there have been raising concerns regarding possible decreases in vaccine effectiveness for new variants and variations in the incubation period. METHODS: We conducted a unicentric observational study at the Hospital Universitari de Bellvitge, Barcelona, using a structured telephone survey performed by trained interviewers to estimate the incubation period of the SARS-CoV-2 Delta variant in a cohort of Spanish hospitalized patients. The distribution of the incubation period was estimated using the generalized odds-rate class of regression models. RESULTS: From 406 surveyed patients, 242 provided adequate information to be included in the analysis. The median incubation period was 2.8 days (95%CI: 2.5-3.1) and no differences between vaccinated and unvaccinated patients were found. Sex and age are neither shown not to be significantly related to the COVID-19 incubation time. CONCLUSIONS: Knowing the incubation period is crucial for controlling the spread of an infectious disease: decisions on the duration of the quarantine or on the periods of active monitoring of people who have been at high risk of exposure depend on the length of the incubation period. Furthermore, its probability distribution is a key element for predicting the prevalence and the incidence of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Spain/epidemiology , Cohort Studies , Infectious Disease Incubation Period , Vaccination
7.
PLoS One ; 17(10): e0275615, 2022.
Article in English | MEDLINE | ID: covidwho-2065140

ABSTRACT

OBJECTIVE: To determine the health status and exercise capacity of COVID-19 survivors one year after hospital discharge. METHODS: This multicenter prospective study included COVID-19 survivors 12 months after hospital discharge. Participants were randomly selected from a large cohort of COVID-19 patients who had been hospitalized until 15th April 2020. They were interviewed about persistent symptoms, underwent a physical examination, chest X-ray, and a 6-minute walk test (6MWT). A multivariate analysis was performed to determine the risk factors for persistent dyspnea. RESULTS: Of the 150 patients included, 58% were male and the median age was 63 (IQR 54-72) years. About 82% reported ≥1 symptoms and 45% had not recovered their physical health. The multivariate regression analysis revealed that the female sex, chronic obstructive pulmonary disease, and smoking were independent risk factors for persistent dyspnea. Approximately 50% completed less than 80% of the theoretical distance on the 6MWT. Only 14% had an abnormal X-ray, showing mainly interstitial infiltrates. A third of them had been followed up in outpatient clinics and 6% had undergone physical rehabilitation. CONCLUSION: Despite the high rate of survivors of the first wave of the COVID-19 pandemic with persistent symptomatology at 12 months, the follow-up and rehabilitation of these patients has been really poor. Studies focusing on the role of smoking in the persistence of COVID-19 symptoms are lacking.


Subject(s)
COVID-19 , COVID-19/epidemiology , Dyspnea/epidemiology , Dyspnea/etiology , Female , Hospitals , Humans , Male , Middle Aged , Pandemics , Patient Discharge , Prospective Studies
8.
Kidney Int ; 101(5): 1027-1038, 2022 05.
Article in English | MEDLINE | ID: covidwho-1665243

ABSTRACT

Long-term adaptive immune memory has been reported among immunocompetent individuals up to eight months following SARS-CoV-2 infection. However, limited data is available in convalescent patients with a solid organ transplant. To investigate this, we performed a thorough evaluation of adaptive immune memory at different compartments (serological, memory B cells and cytokine [IFN-γ, IL-2, IFN-γ/IL12 and IL-21] producing T cells) specific to SARS-CoV-2 by ELISA and FluoroSpot-based assays in 102 convalescent patients (53 with a solid organ transplants (38 kidney, 5 liver, 5 lung and 5 heart transplant) and 49 immunocompetent controls) with different clinical COVID-19 severity (severe, mild and asymptomatic) beyond six months after infection. While similar detectable memory responses at different immune compartments were detected between those with a solid organ transplant and immunocompetent individuals, these responses were predominantly driven by distinct COVID-19 clinical severities (97.6%, 80.5% and 42.1%, all significantly different, were seropositive; 84% vs 75% vs 35.7%, all significantly different, showed IgG-producing memory B cells and 82.5%, 86.9% and 31.6%, displayed IFN-γ producing T cells; in severe, mild and asymptomatic convalescent patients, respectively). Notably, patients with a solid organ transplant with longer time after transplantation did more likely show detectable long-lasting immune memory, regardless of COVID-19 severity. Thus, our study shows that patients with a solid organ transplant are capable of maintaining long-lasting peripheral immune memory after COVID-19 infection; mainly determined by the degree of infection severity.


Subject(s)
COVID-19 , Organ Transplantation , Antibodies, Viral , Humans , Immunologic Memory , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients
9.
Clin Microbiol Infect ; 27(11): 1685-1692, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1345291

ABSTRACT

OBJECTIVES: The effect of the use of immunomodulatory drugs on the risk of developing hospital-acquired bloodstream infection (BSI) in patients with COVID-19 has not been specifically assessed. We aim to identify risk factors for, and outcomes of, BSI among hospitalized patients with severe COVID-19 pneumonia. METHODS: We performed a severity matched case-control study (1:1 ratio) nested in a large multicentre prospective cohort of hospitalized adults with COVID-19. Cases with BSI were identified from the cohort database. Controls were matched for age, sex and acute respiratory distress syndrome. A Cox proportional hazard ratio model was performed. RESULTS: Of 2005 patients, 100 (4.98%) presented 142 episodes of BSI, mainly caused by coagulase-negative staphylococci, Enterococcus faecalis and Pseudomonas aeruginosa. Polymicrobial infection accounted for 23 episodes. The median time from admission to the first episode of BSI was 15 days (IQR 9-20), and the most frequent source was catheter-related infection. The characteristics of patients with and without BSI were similar, including the use of tocilizumab, corticosteroids, and combinations. In the multivariate analysis, the use of these immunomodulatory drugs was not associated with an increased risk of BSI. A Cox proportional hazard ratio (HR) model showed that after adjusting for the time factor, BSI was associated with a higher in-hospital mortality risk (HR 2.59; 1.65-4.07; p < 0.001). DISCUSSION: Hospital-acquired BSI in patients with severe COVID-19 pneumonia was uncommon and the use of immunomodulatory drugs was not associated with its development. When adjusting for the time factor, BSI was associated with a higher mortality risk.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , COVID-19 , Cross Infection , Immunomodulation , Adult , Bacteremia/drug therapy , Bacteremia/epidemiology , COVID-19/epidemiology , Case-Control Studies , Cross Infection/drug therapy , Cross Infection/epidemiology , Hospitals , Humans , Prospective Studies , Risk Factors , Spain/epidemiology
11.
Nat Commun ; 12(1): 3781, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1275920

ABSTRACT

In addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans are also susceptible to six other coronaviruses, for which consecutive exposures to antigenically related and divergent seasonal coronaviruses are frequent. Despite the prevalence of COVID-19 pandemic and ongoing research, the nature of the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here we longitudinally profile the early humoral immune response against SARS-CoV-2 in hospitalized coronavirus disease 2019 (COVID-19) patients and quantify levels of pre-existing immunity to OC43, HKU1 and 229E seasonal coronaviruses, and find a strong back-boosting effect to conserved but not variable regions of OC43 and HKU1 betacoronaviruses spike protein. However, such antibody memory boost to human coronaviruses negatively correlates with the induction of IgG and IgM against SARS-CoV-2 spike and nucleocapsid protein. Our findings thus provide evidence of immunological imprinting by previous seasonal coronavirus infections that can potentially modulate the antibody profile to SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Antibodies, Viral/immunology , Antibody Formation , COVID-19/blood , COVID-19/transmission , COVID-19/virology , Cross Reactions , Female , Humans , Male , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
12.
BMJ Open ; 10(8): e038957, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-1228875

ABSTRACT

INTRODUCTION: Community-acquired pneumonia (CAP) continues to be a major health problem worldwide and is one of the main reasons for prescribing antibiotics. However, the causative agent is often not identified, resulting in antibiotic overtreatment, which is a key driver of antimicrobial resistance and adverse events. We aim to test the hypothesis that comprehensive molecular testing, compared with routine microbiological testing, would be effective in reducing antibiotic use in patients with CAP. METHODS AND ANALYSIS: We will perform a randomised, controlled, open-label clinical trial with two parallel groups (1:1) at two tertiary hospitals between 2020 and 2022. Non-severely immunosuppressed adults hospitalised for CAP will be considered eligible. Patients will be randomly assigned to receive either the experimental diagnosis (comprehensive molecular testing plus routine microbiological testing) or standard diagnosis (only microbiological routine testing). The primary endpoint will be antibiotic consumption measured as days of antibiotic therapy per 1000 patient-days. Secondary endpoints will be de-escalation to narrower antibiotic treatment, time to switch from intravenous to oral antibiotics, days to reaching an aetiological diagnosis, antibiotic-related side effects, length of stay, days to clinical stability, intensive care unit admission, days of mechanical ventilation, hospital readmission up to 30 days after randomisation and death from any cause by 48 hours and 30 days after randomisation. We will need to include 440 subjects to be able to reject the null hypothesis that both groups have equal days of antibiotic therapy per 1000 patient-days with a probability >0.8. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Ethics Committee of Bellvitge Hospital (AC028/19) and from the Spanish Medicines and Medical Devices Agency, and it is valid for all participating centres under existing Spanish legislation. Results will be presented at international meetings and will be made available to patients, their caregivers and funders. TRIAL REGISTRATION NUMBER: ClinicalTrials: NCT04158492. EudraCT: 2018-004880-29.


Subject(s)
COVID-19 , Pneumonia , Adult , Anti-Bacterial Agents/therapeutic use , Clinical Trials, Phase IV as Topic , Humans , Molecular Diagnostic Techniques , Pneumonia/drug therapy , Randomized Controlled Trials as Topic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL